线性回归用于识别因变量与一个或多个自变量之间的关系.提出了一种关系模型,并使用参数值的估计来建立估计的回归方程.
然后使用各种测试来确定模型是否令人满意.如果是,则估计的回归方程可用于预测自变量给定值的因变量的值.在SAS中,程序 PROC REG 用于查找两个变量之间的线性回归模型.
语法
基本在SAS中应用PROC REG的语法是 :
PROC REG DATA = dataset;MODEL variable_1 = variable_2;
以下是所用参数的说明及减号;
数据集是数据集的名称.
variable_1和variable_2 是变量用于查找相关性的数据集的名称.
示例
以下示例显示了通过使用 PROC REG来找到两个变量马力和汽车重量之间的相关性的过程.在结果中我们看到可用于形成回归方程的截距值.
PROC SQL;create table CARS1 asSELECT invoice, horsepower, length, weight FROM SASHELP.CARS WHERE make in ('Audi','BMW');RUN;proc reg data = cars1;model horsepower = weight ;run;
执行上述代码后,我们得到以下结果 :
上面的代码还给出了模型的各种估计的图形视图,如下所示.作为一种高级SAS程序,它不会停止将截距值作为输出.