让我们分析实时应用程序以获取最新的Twitter提要及其主题标签.早些时候,我们已经看到Storm和Spark与Kafka的整合.在这两个场景中,我们创建了一个Kafka Producer(使用cli)向Kafka生态系统发送消息.然后,风暴和火花集成通过使用Kafka消费者读取消息并分别将其注入风暴和火花生态系统.所以,实际上我们需要创建一个Kafka Producer,它应该&减去;
使用"Twitter Streaming API"阅读twitter feed,
处理Feed,
提取HashTags并
将其发送给Kafka.
一旦Kafka收到,Storm/Spark集成就会收到信息并将其发送到Storm/Spark生态系统.
Twitter Streaming API
可以使用任何编程语言访问"Twitter Streaming API". "twitter4j"是一个开源的非官方Java库,它提供了一个基于Java的模块,可以轻松访问"Twitter Streaming API". "twitter4j"提供了一个基于监听器的框架来访问推文.要访问"Twitter Streaming API",我们需要登录Twitter开发者帐户,并且应该获得以下 OAuth 身份验证详细信息.
Customerkey
CustomerSecret
AccessToken
AccessTookenSecret
创建开发者帐户后,下载"twitter4j"jar文件并将其放在java类路径中.
完整Twitter Kafka生产者编码(KafkaTwitterProducer.java)列在下面 :
import java.util.Arrays;import java.util.Properties;import java.util.concurrent.LinkedBlockingQueue;import twitter4j.*;import twitter4j.conf.*;import org.apache.kafka.clients.producer.Producer;import org.apache.kafka.clients.producer.KafkaProducer;import org.apache.kafka.clients.producer.ProducerRecord;public class KafkaTwitterProducer { public static void main(String[] args) throws Exception { LinkedBlockingQueuequeue = new LinkedBlockingQueue (1000); if(args.length < 5){ System.out.println( "Usage: KafkaTwitterProducer "); return; } String consumerKey = args[0].toString(); String consumerSecret = args[1].toString(); String accessToken = args[2].toString(); String accessTokenSecret = args[3].toString(); String topicName = args[4].toString(); String[] arguments = args.clone(); String[] keyWords = Arrays.copyOfRange(arguments, 5, arguments.length); ConfigurationBuilder cb = new ConfigurationBuilder(); cb.setDebugEnabled(true) .setOAuthConsumerKey(consumerKey) .setOAuthConsumerSecret(consumerSecret) .setOAuthAccessToken(accessToken) .setOAuthAccessTokenSecret(accessTokenSecret); TwitterStream twitterStream = new TwitterStreamFactory(cb.build()).get-Instance(); StatusListener listener = new StatusListener() { @Override public void onStatus(Status status) { queue.offer(status); // System.out.println("@" + status.getUser().getScreenName() + " - " + status.getText()); // System.out.println("@" + status.getUser().getScreen-Name()); /*for(URLEntity urle : status.getURLEntities()) { System.out.println(urle.getDisplayURL()); }*/ /*for(HashtagEntity hashtage : status.getHashtagEntities()) { System.out.println(hashtage.getText()); }*/ } @Override public void onDeletionNotice(StatusDeletionNotice statusDeletion-Notice) { // System.out.println("Got a status deletion notice id:" + statusDeletionNotice.getStatusId()); } @Override public void onTrackLimitationNotice(int numberOfLimitedStatuses) { // System.out.println("Got track limitation notice:" + num-berOfLimitedStatuses); } @Override public void onScrubGeo(long userId, long upToStatusId) { // System.out.println("Got scrub_geo event userId:" + userId + "upToStatusId:" + upToStatusId); } @Override public void onStallWarning(StallWarning warning) { // System.out.println("Got stall warning:" + warning); } @Override public void onException(Exception ex) { ex.printStackTrace(); } }; twitterStream.addListener(listener); FilterQuery query = new FilterQuery().track(keyWords); twitterStream.filter(query); Thread.sleep(5000); //Add Kafka producer config settings Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("batch.size", 16384); props.put("linger.ms", 1); props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serializa-tion.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serializa-tion.StringSerializer"); Producer producer = new KafkaProducer (props); int i = 0; int j = 0; while(i < 10) { Status ret = queue.poll(); if (ret == null) { Thread.sleep(100); i++; }else { for(HashtagEntity hashtage : ret.getHashtagEntities()) { System.out.println("Hashtag: " + hashtage.getText()); producer.send(new ProducerRecord ( top-icName, Integer.toString(j++), hashtage.getText())); } } } producer.close(); Thread.sleep(5000); twitterStream.shutdown(); }}
编译
使用以下命令编译应用程序 :
javac -cp"/path/to/kafka/libs/*":"/path/to/twitter4j/lib/*": KafkaTwitterProducer.java
执行
打开两个控制台.在一个控制台中运行上面编译的应用程序,如下所示.
java -cp "/path/to/kafka/libs/*":"/path/to/twitter4j/lib/*":. KafkaTwitterProducermy-first-topic food
在另一个窗口中运行上一章中解释的任何一个Spark/Storm应用程序.需要注意的要点是,在两种情况下使用的主题应该相同.在这里,我们使用"my-first-topic"作为主题名称.
输出
此应用程序的输出将取决于关键字和推特的当前馈送.下面指定了一个示例输出(风暴积分).
. . .food : 1foodie : 2burger : 1. . .