数据丰富是指用于增强,改进和改进原始数据的一系列流程.它指的是有用的数据转换(原始数据到有用信息).数据丰富的过程着重于使数据成为现代企业或企业的宝贵数据资产.
最常见的数据丰富过程包括通过使用特定的方式纠正数据库中的拼写错误或印刷错误决策算法.数据丰富工具为简单的数据表添加了有用的信息.
考虑以下代码进行单词和减号的拼写纠正;
import refrom collections import Counterdef words(text): return re.findall(r'\w+', text.lower())WORDS = Counter(words(open('big.txt').read()))def P(word, N=sum(WORDS.values())): "Probabilities of words" return WORDS[word] / Ndef correction(word): "Spelling correction of word" return max(candidates(word), key=P)def candidates(word): "Generate possible spelling corrections for word." return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])def known(words): "The subset of `words` that appear in the dictionary of WORDS." return set(w for w in words if w in WORDS)def edits1(word): "All edits that are one edit away from `word`." letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts)def edits2(word): "All edits that are two edits away from `word`." return (e2 for e1 in edits1(word) for e2 in edits1(e1)) print(correction('speling')) print(correction('korrectud'))
在这个程序中,我们将匹配包含更正单词的"big.txt".单词与文本文件中包含的单词匹配
并相应地打印相应的结果.
输出
以上代码将生成以下输出 :